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We present an asymptotic analysis of time-delayed feedback control of steady states for large delay time. By
scaling arguments, and a detailed comparison with exact solutions, we establish the parameter ranges for
successful stabilization of an unstable fixed point of focus type. Insight into the control mechanism is gained
by analyzing the eigenvalue spectrum, which consists of a pseudocontinuous spectrum and up to two strongly
unstable eigenvalues. Although the standard control scheme generally fails for large delay, we find that if the
uncontrolled system is sufficiently close to its instability threshold, control does work even for relatively large
delay times.
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I. INTRODUCTION

The stabilization of unstable and chaotic systems is the
subject of extensive investigations in physics, chemistry, bi-
ology, and medicine �1–3�. Starting with the work of Ott,
Grebogi, and Yorke �4�, a variety of methods for chaos con-
trol have been developed in order to stabilize unstable peri-
odic orbits �UPOs� embedded in a chaotic attractor. A par-
ticularly simple and efficient scheme is time-delayed
feedback, which uses the difference s�t�−s�t−�� of a signal s
at a time t and a delayed time t−� as suggested by Pyragas
�5�. This method is noninvasive since the stabilized state
exists already—though unstable—in the uncontrolled sys-
tem, and the control force vanishes when a UPO of period �
is reached. This scheme was improved by Socolar et al. �6�
by considering multiple delays in the form of an infinite
series �extended time-delay autosynchronization or ETDAS�,
and other variants have also been elaborated �7–12�. Some
analytical results on the conditions for control can be ob-
tained from the Floquet spectrum of the UPOs �13–17�, and
a detailed numerical bifurcation analysis has been performed
�18�.

Time-delayed feedback with appropriate time delay can
also be used to stabilize unstable steady states �19�. This
scheme is more robust than derivative control of fixed points
�20,21�, and has been applied to electrochemical systems
�22,23� and nonlinear electronic circuits �24�. All-optical re-
alizations are another important application of time-delay au-
tosynchronization. In particular, a time-delayed optical feed-
back occurs naturally in semiconductor lasers �25–28�, and
often the delay time is rather large �29,30�. Time-delayed
feedback control of steady states has been studied in semi-
conductor lasers under resonant feedback from a Fabry-Perot
resonator �31�.

It is the purpose of this paper to obtain deeper analytical
insight into the time-delayed feedback control of steady
states for large delay by relating asymptotic properties of the
eigenvalue spectrum with the exact solutions, and by dis-
cussing the shape of the control domain in the space of the
control parameters. It has been shown that time-delayed
feedback control fails if the number of positive eigenvalues

of the fixed point �or more generally, positive Floquet expo-
nents of the UPO� is odd �14,15�, hence we consider an
unstable fixed point of focus type with two complex-
conjugate eigenvalues �=�± i�, ��0. If �→0, a reverse
Hopf bifurcation occurs, and the fixed point becomes stable.
Three different time scales are of importance in such a con-
trol problem: �i� the inverse divergence rate of trajectories
around the unstable fixed point 1 /�, �ii� the period of un-
damped oscillations around the fixed point T0=2� /�, where
� is the oscillation frequency, and �iii� the delay time � used
in the feedback control loop. Here we consider the case
��1/�, and study a generic model equation that describes
an unstable focus above a Hopf bifurcation. The paper is
organized as follows. In Sec. II, we present the analytical
solution of the complex spectrum as a function of delay time
using the Lambert function. In Sec. III, the scaling properties
of the spectrum for large delay are derived. From this, the
control domain close to the Hopf bifurcation of the fixed
point is constructed �Sec. IV�. The Appendix contains the
explicit analytical form of the boundary of the control
domain.

II. STABILIZATION OF AN UNSTABLE FIXED POINT

The stability of a fixed point x* in a general nonlinear
dynamic system is obtained by linearizing the vector field
around x*. Hence, in order to study the stabilization of fixed
points by time-delayed feedback control, it is sufficient to
consider the generic model of a two-variable linear system
that, in the absence of delay, has an unstable focus at x*=0,
y*=0 with eigenvalues of the Jacobian �± i�, ��0, ��0.

Applying the standard diagonal time-delayed feedback
control scheme, we obtain the basic model equation for sta-
bilizing unstable steady states �19�,

ẋ�t� = �x�t� + �y�t� − K�x�t� − x�t − ��� ,

ẏ�t� = − �x�t� + �y�t� − K�y�t� − y�t − ��� , �1�

where K is the feedback control strength, and � is a feedback
delay time. In the absence of control, the zero fixed point has
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the eigenvalues �=�± i�, ��0, i.e., the parameters
��0 and � are a measure for the distance from the instabil-
ity threshold, e.g., a Hopf bifurcation, and the intrinsic
eigenfrequency, respectively.

In the presence of the control, the stability of the
fixed point is determined by the roots � of the characteristic
equation

�� + K�1 − e−��� − ��2 + �2 = 0.

This equation can be further simplified to

� ± i� = � + K�1 − e−��� . �2�

Note that due to the presence of the delay, Eq. �2� possesses
infinitely many solutions. Nevertheless, the stability of the
fixed point is determined by a finite number of critical roots
with the largest real parts �32�. As a result, the stabilization
problem consists in determining these critical eigenvalues
and describing their behavior. In particular, successful con-
trol is achieved by providing conditions in terms of the con-
trol parameters K and � for which all critical eigenvalues
have negative real parts.

Using the Lambert function W, which is defined as the
inverse function of g�z�=zez for complex z �32�, the solution
of Eq. �2� can be expressed as

�� = W�K�e−��±i���+K�� + �� ± i��� − K� . �3�

Figure 1 shows the real parts of the critical eigenvalues � as
a function of � for different values of K. The insets show the
same eigenvalues as curves in the complex plane, param-
etrized by �. Note that the eigenvalue originating from the
uncontrolled system �red online� is the most unstable one for
sufficiently small K and does not couple to the eigenvalues
generated by the delay �see Figs. 1�a� and 1�b��. The count-
able set of eigenvalues generated by the delay originates
from Re �=−� for �→0, and shows the typical nonmono-
tonic behavior that leads to stability islands for appropriate �

and K �19�. For larger values of K, the eigenvalue originating
from the uncontrolled system is no longer separated from
those generated by the delay �see Figs. 1�c� and 1�d��. More-
over, one can observe a scaling behavior of the real parts of
the eigenvalues for large � : in Figs. 1�a�–1�c�, there is a
single eigenvalue retaining a positive real part, whereas
all the other real parts tend to zero for large �. The insets
show that the eigenvalues in fact accumulate along the
imaginary axis. This observation will be studied in detail in
the following section.

III. ASYMPTOTIC PROPERTIES OF THE SPECTRUM
FOR LARGE DELAY

The scaling behavior of eigenvalues of general linear
delay-differential equations for large delay � has been
analyzed in �33�. In particular, it turns out that one can
distinguish the following.

�a� Strongly unstable eigenvalues �s which have positive
real parts that do not tend to zero with increasing �, i.e.,
�s→const and Re �s	
 for some 
�0 as �→�.

�b� Pseudocontinuous spectrum �PS� of eigenvalues �p

with real parts that scale as 1 /�, i.e., �p= 1
� �+ i��+ 1

� �
+O� 1

�2 � with some �, �, and . A spectrum with this scaling
behavior and positive real part leads to so-called weak
instabilities �for more details, see �33,34��.

In order to obtain the strongly unstable eigenvalues, we
insert �s=const into Eq. �2� and assume �→�. Since
Re �s�
, the exponential term vanishes and we arrive at the
expression for �s:

�s = � − K ± i� ,

which holds for �−K�0. Thus we obtain the following
statement:

�i� For K��, there exist two eigenvalues of the controlled
stationary state, �s1 and its complex-conjugate �s2, such that
�s1→�−K+ i� as �→�. The real parts of these eigenvalues
are positive and, hence, the stationary state is strongly
unstable �cf. Figs. 1�a�–1�c��.

In order to obtain the asymptotic expression for the re-
maining pseudocontinuous part of the spectrum, we have to
insert the scaling �p= 1

� �+ i��+ 1
� � into Eq. �2�. Up to the

leading order, we obtain the equation

i� + K�1 − e−�e−i� = � ± i� , �4�

and the additional condition �=��m�=2�m /�, m
= ±1, ±2, ±3, . . .. Equation �4� can be solved with respect to
����,

���� = −
1

2
ln��1 −

�

K
�2

+ �� ± �

K
�2� . �5�

The fact that Re �p	���� /� and Im �p	� up to the lead-
ing order means that the eigenvalues �p accumulate in the
complex plane along curves (���� ,�), provided that the real
axis is scaled as � Re �. The actual positions of the eigen-
values on the curves can be obtained by evaluating � at
points ��m�=2�m /�. With increasing �, the eigenvalues
cover the curves densely �33�. Hence, we obtain the second
statement:

FIG. 1. �Color online� Real parts of the complex eigenvalues �
as a function of � calculated from the characteristic Eq. �2� for 10
modes with the largest real parts. �a� K=0.25, �b� K=0.5, �c�
K=0.75, and �d� K=1.0. Inset: eigenmodes � in the complex plane
for �� �0,20�. Red curves: Eigenvalue originating from the uncon-
trolled system; black curves: eigenmodes created by the delay
control. Parameters: �=�, �=1.
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�ii� The fixed point of system �1� has a set of eigenvalues
that behave asymptotically as �p���k��= 1

� ����k��+ i���k�

+ 1
� ���k��� with ���� given by Eq. �5�. We have weak

instability if the maximum of ���� is positive, i.e.,

�max = max
�

���� = − ln
1 −
�

K

 � 0,

which is the case for K�� /2.
Figure 2 illustrates the spectrum of the fixed point of sys-

tem �1� for �=20. One can clearly distinguish the two types
of eigenvalues. For K�� /2 �Fig. 2�a��, the fixed point has a
pair of strongly unstable eigenvalues, whereas the PS is
stable. Note that the symbols �red online� show the spectrum
computed numerically from the full eigenvalue equation,
whereas the dashed lines are the curves (���� ,�) from the
asymptotic approximation where the PS accumulates
for large �. At K=� /2 �cf. Fig. 2�b��, the PS touches the
imaginary axis resulting in the appearance of a weak insta-
bility for K�� /2. This leads to the coexistence of strong and
weak instabilities for � /2�K�� �Fig. 2�c��. At K=�, the
strongly unstable eigenvalues disappear, being absorbed by
the PS, which develops a singularity at this moment, cf. Fig.
2�d�. Finally, for K�� �Fig. 2�e��, there occurs only a weak
instability induced by the PS.

After inspecting all possibilities given in Fig. 2, we con-
clude that stabilization by the feedback control scheme �1�
always has an upper limit �c such that for ���c it fails.
Additionally, we note that for K�� and large delay, the sta-
tionary state is strongly unstable with the complex-conjugate

eigenvalues �1,2=�−K± i�, and for K�� weakly unstable
with a large number of unstable eigenvalues given by Eq.
�4�, the real parts of which scale as 1/�.

IV. CONTROL DOMAIN CLOSE TO THE HOPF
BIFURCATION

In this section, we show that strongly delayed feedback
can stabilize a fixed point in the case when the fixed point is
sufficiently close to the Hopf bifurcation. In our case, this
means that � is small. In particular, we are going to prove
that the delayed feedback control scheme will be successful
even for large delay within the range of order 1 /�2. We will
also provide conditions for successful control.

For the fixed point that is close to the Hopf bifurcation,
we assume K��, and hence it has an unstable PS, as shown
in Fig. 2�e�. As � stays fixed, with increasing � the curve
of the PS will be densely filled with the eigenvalues
���m�=2�m /��. The only possibility for the fixed point to
become stable is to assume that � is also scaled with increas-
ing �. Particularly, we will show that in order to achieve
control, we have to scale it as �=�0�2 with fixed �0 �here,
for convenience, we introduce the small parameter �=1/��.

Figure 3 illustrates the part of the curve ���� which may
induce an instability in the system. More precisely, the inter-
val of unstable frequencies is �1����2, where �1 and �2
are given by the zeros of ����,

�1,2 = � ± K�1 − �1 −
�

K
�2

.

For small �, we can approximate this as

FIG. 2. �Color online� Numerically computed spectrum of
eigenvalues for �=20 �asterisks, red online�. The dashed lines de-
pict the asymptotic pseudocontinuous spectrum. �a� Strong instabil-
ity for K=0.25 �K�� /2�; �b� K=0.5=� /2, critical case at which
the weak instability occurs in addition to the strong one; �c� K
=0.75 �� /2�K���, strong and weak instability; �d� K=1.0=�,
critical case at which a strong instability disappears via the singu-
larity of the pseudocontinuous spectrum; �e� K=1.25 �K���, weak
instability. Parameters: �=�, �=1.

FIG. 3. Curve of the pseudocontinuous spectrum. The actual
position of the complex eigenvalues �= 1

� �+ i��+O� 1
�
�� on the

curve corresponds to ��m�=2�m�, m= ±1, ±2, ±3, . . ., �=1/�. The
fixed point is stable if the imaginary parts of the eigenvalues are
outside of the interval �1����2. Such a case with ��m0���1

��2���m0+1� is illustrated, in which the leading eigenvalues ��m0�

and ��m0+1� have negative real parts.
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�1,2 = � ± �2�K . �6�

The length of the interval of unstable frequencies is
��=�2−�1=2�2�K.

We note that the actual position of the eigenvalues on the
curve corresponds to the values of ��m�=2�m� with any
integer m. It is easy to see that the distance between the
frequencies of neighboring eigenvalues ��m+1�−��m�=2��
scales as �. Therefore, the control can be successful if
�=�0�2. In this case the length of the unstable interval is
��=2��2�0K and scales also as �. The control can be
achieved if the length is smaller than the distance between
neighboring eigenvalues, i.e., ��=2��2�0K�2��, leading
to

K �
�2

2�0
. �7�

Equation �7� gives a necessary condition for successful
control.

The relative phase of the delay plays an additional impor-
tant role. Depending on this phase, control occurs periodi-
cally with �. In order to quantify this effect, let us introduce
��=2� /� to be the frequency associated with the delay.
Then the ratio of the internal frequency � and �� is given by
� /��=�� mod 1. Here 0����1 measures the detuning
from the resonance between the internal frequency and the
delay-induced one. Using this notation and Eq. �6�, we can
rewrite

�1,2 = m0�� + ���� ± ��2�0K = ��m0� + ��2��� ± �2�0K� .

Here m0 is some integer number. The necessary and
sufficient condition for the stability is �cf. Fig. 3�
��m0���1��2���m0+1�, which leads to

�2�0K � 2� min��� ,1 − ��

or

K �
2�2

�0
�min��� ,1 − ���2

=
2�2

�0
�min����

2�
�

f

,1 − ���

2�
�

f
��2

, �8�

where � ��
2�

�
f is the fractional part of ��

2� �35�. Figure 4 shows
the domain of control given by Eq. �8� for �=�0 /�2.

In order to return to unscaled parameters, we have to
substitute �0=� /�2=��2. Figure 5�a� shows the obtained
domain of control for fixed small �=0.01. The maximum
allowed values of K decrease as 1/�2. More precisely,
we have

Kmax��� =
�2

2��2 . �9�

The application of the asymptotic analysis allows us to
reveal many essential features and mechanisms of the stabi-
lization control scheme �1� for large delay �. On the other
hand, the obtained approximations are valid as soon as K is
much larger than �. Figure 5 shows a comparison of the
boundaries of the control domain, which are given by the

asymptotic methods and exact analytical formulas derived in
Appendix A. Very close to the Hopf bifurcation ��=0.01�,
the agreement is excellent even at small values of � �Fig.
5�a��, while for larger � �Fig. 5�b�� the deviations become
more visible. In addition, the approximate solution does not
give the lower boundary of the control domain for small K,
which only shows up in Fig. 6. The analytical approach
which we give in Appendix A also allows us to identify the
“peaks” of the control domains, which occur at �max= �2n
+1�� /�, n=0,1 ,2 , . . ., as double-Hopf bifurcation points.
The critical time delay, above which control fails, is given by
�c=2/�.

FIG. 4. Shaded region: Domain of control in the �� ,K� plane
for the fixed point close to the Hopf bifurcation, given by
the asymptotic formula Eq. �8� for �=�0 /�2. Parameters: �=�,
�0=1.

FIG. 5. �Color online� Domain of control in the �� ,K� plane, and
largest negative real part of the complex eigenvalues ��K ,�� �in
color code� calculated from the characteristic equation using the
Lambert function �Eq. �3��. Dashed lines �blue�: asymptotic
approximation Eq. �8� of stability boundary; dotted line �blue�:
approximate maxima Eq. �9�. Solid lines: exact stability boundaries,
cf. Eqs. �A3� and �A4�. Parameters: �a� �=�, �=0.01, �b� �=�,
�=0.1.
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An inspection of the islands of stabilization in Figs. 5 and
6 reveals that the absolute value of the real part of the critical
eigenvalue, i.e., the eigenvalue that has the largest real part
�but remains negative within those islands�, decreases with
increasing �. Hence the fixed point becomes less stable, and
it is expected that the system becomes more sensitive to
noise, and it will be more difficult to realize stabilization
experimentally, if the delay time is chosen several times the
system’s characteristic time T0.

V. CONCLUSIONS

Time delays occur naturally in a variety of optical,
electronic, chemical, biological, and other nonlinear systems.
This feature can be used in a simple and easily realizable
way to stabilize unstable steady states by time-delayed
difference feedback control. However, the control scheme
may fail if the delay time � and the control amplitude K are
not chosen appropriately. In this paper, we have elaborated
analytical conditions for successful control of a fixed point
of focus type. By asymptotic expansion methods for large
delay, and a detailed comparison with exact solutions,
we have established the parameter ranges for successful
control. Thereby we have not only obtained the precise shape
of the islands of control in the �� ,K� parameter plane,
but have also gained insight into the mechanism of control
by analyzing the eigenvalue spectrum of the fixed point
of the delay-differential equation, which consists of a
pseudocontinuous spectrum and up to two strongly unstable
complex eigenvalues. Although our analysis has shown
that the standard control scheme generally fails for large
delay, we have found that if the uncontrolled system is
sufficiently close to its instability threshold, i.e., a Hopf bi-
furcation, control does work even for relatively large delay

times, compared to the intrinsic oscillation period
T0=2� /�, cf. Fig. 5�a�. These results may be of interest,
e.g., in application to laser systems where oscillatory
instabilities may occur above the first laser threshold, but
stable cw operation is often desired �25�. By suitable optical
or optoelectronic feedback using, for instance, external cavi-
ties and Fabry-Perot resonators, time-delayed feedback
control may be realized.
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APPENDIX A: BOUNDARIES OF THE CONTROL
DOMAIN

The exact boundaries of the control domain can be ob-
tained analytically �19� from the characteristic Eq. �2� by
setting the real part of the complex eigenvalue � equal to
zero, i.e., �= i�. We then obtain the two real equations

� = K�1 − cos ��� , �A1�

±� = � + K sin �� . �A2�

Solving this system of transcendental equations and observ-
ing the positivity of the delay time � and the parameters
� ,� ,K, we find three families of branches of solutions,
where the non-negative integer n takes care of the different
leaves of the involved multivalued functions,

�1�K,n� =

2n� + arccos
K − �

K

� − ��2K − ���
,

�

2
� K �

�2 + �2

2�
,

�A3�

�2�K,n� =

2�n + 1�� − arccos
K − �

K

� + ��2K − ���
,

�

2
� K , �A4�

�3�K,n� =

2�n + 1�� − arccos
K − �

K

− � + ��2K − ���
,

�2 + �2

2�
� K .

�A5�

The corresponding eigenvalues �= i� are given by

�1,3 = ± �� − ��2K − ���� ,

�2 = ± �� + ��2K − ���� .

For the boundaries of the stability islands, only the branches
�1 and �2 are relevant. Note that at the points

K = Kmin =
�

2
,

FIG. 6. �Color online� Enlargement of Fig. 5: Deviation of the
asymptotic results �dashed� from the exact stability boundary �solid�
for small K or large �.
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� = �min�n� =
�2n + 1��

�
,

the branch �1�K ,n� ends, but is continued by �2�K ,n�. As it is
shown in �19�, these pairs of curves, Eqs. �A3� and �A4�,
form the boundaries of the control domains in the �� ,K�
parameter plane, as depicted by solid lines in Figs. 5 and 6.
These islands become smaller for increasing n and the cor-
responding values for K are confined by

Kmin � K � Kmax�n� ,

where the maximal value Kmax�n� is given by an intersection
point of the two branches �1�K ,n� and �2�K ,n�. These inter-
section points correspond to double-Hopf points of codimen-
sion 2. They are given by solutions of the transcendental
equation

arccos
� − K

K
=

�2n + 1��
�

��2K − ��� . �A6�

The corresponding values of � are given by

�max�n� = �min�n� =
�2n + 1��

�
. �A7�

Note that the condition �A6� is satisfied also for K=Kmin. The
stability domain vanishes if Kmin and Kmax coincide. Forming
the derivative of Eq. �A6� with respect to K, we obtain

1

K
=

�2n + 1��
�

.

Inserting K=Kmin=� /2 finally gives the relation

� =
�2n + 1���

2
.

If this relation is satisfied, we have a resonant double-Hopf
point of codimension 3. Since n has to be an integer, this
happens only for particular choices of � and �. Otherwise,
the integer part of the value n obtained from this relation
gives the number of nondegenerate stability islands.

Using Eq. �A7�, the maximum delay time �c which allows
for stabilization is obtained as

�c =
2

�
.

Note that this boundary is sharp only if � is an odd integer
multiple of � /�. For

�

�
�

�

2
,

even the first stability island vanishes and stabilization is not
possible.
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